已知∠ABC,点P在射线BA上,请根据“同位角相等,两直线平行”,利用直尺和圆规,过点P作直线PD平行于BC。(保留作图痕迹,不写作法。)
小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方是否公平?请说明理由.
如图,将一付三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.
(1)求证:CF∥AB;
(2)求∠DFC的度数.
(1)用配方法解方程:.
(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.
某新建住宅小区里,有一块三角形绿地如图所示,现准备在其中安装一个照明灯P,使它到绿地各边的距离相等.请你在图中确定安装照明灯P的位置.
已知二次函数图象顶点为C(1,0),直线与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.
(1)求此二次函数的解析式;
(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;
(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.