探究发现:
如图1,△ABC是等边三角形,点E在直线BC上,∠AEF=60°,EF交等边三角形外角平分线CF于点F,当点E是BC的中点时,有AE=EF成立;
数学思考:某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:
当点E是直线BC上(B,C除外)(其它条件不变),结论AE=EF仍然成立.请你从“点E在线段BC上”;“点E在线段BC延长线”;“点E在线段BC反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明AE=EF.
拓展应用:当点E在线段BC的延长线上时,若CE=BC,在图3中画出图形,并运用上述结论求出的值.
已知分式:,
,其中
.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?为什么?
观察下面的变形规律:=1-
;
=
-
;
=
-
;……解答下面的问题:
(1)若n为正整数,请你猜想= ;
(2)求和:+
+
.(注:只能用上述结论做才能给分);
(3)用上述相似的方法求和:.
已知:如图,∠ABC=50°,∠ACB=80°,点D、B、C、E四点共线,DB=AB,CE=CA,求∠D、∠E、∠DAE的度数.
用反证法证明:已知直线a、b被直线c所截,∠1+∠2≠180°.求证:a与b不平行.
证明:假设_________________________,则:∠1+∠2=180°(___________________________)
这与____________________矛盾,故假设不成立.所以a与b不平行.
一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为(km),快车离乙地的距离为
(km),慢车行驶时间为x(h),两车之间的距离为S(km),
,
与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:
(1)图中的a= ,b= ;
(2)求S关于x的函数关系式;
(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.