已知函数在
上的最大值为
求数列的通项公式;
求证:对任何正整数,都有
;
设数列的前
项和
,求证:对任何正整数
,都有
成立
已知全集且
,
.
求(1),
;(2)求
.
(本题16分)已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OMON(O为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
.如图,互相垂直的两条公路、
旁有一矩形花园
,现欲将其扩建成一个更大的三角形花园
,要求
在射线
上,
在射线
上,且
过点
,其中
米,
米. 记三角形花园
的面积为S.
(Ⅰ)当的长度是多少时,S最小?并求S的最小值.
(Ⅱ)要使S不小于平方米,则
的长应在什么范围内?
(本题14分)已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab.
(1)求cosC;
(2)若c=2,求△ABC面积的最大值.
(本题14分)已知P(2,1),直线l:x-y+4=0.
(1)求过点P与直线l平行的直线方程;
(2) 求过点P与直线l垂直的直线方程.