在“探究单摆摆长与周期关系”的实验中,某同学的主要操作步骤如下:
A.取一根符合实验要求的摆线,下端系一金属小球,上端固定在O点;
B.在小球静止悬挂时测量出O点到小球球心的距离l;
C.拉动小球使细线偏离竖直方向一个不大的角度(约为5°),然后由静止释放小球;
D.用秒表记录小球完成n次全振动所用的时间t.
(1)用所测物理量的符号表示重力加速度的测量值,其表达式为g= ;
(2)若测得的重力加速度数值大于当地的重力加速度的实际值,造成这一情况的原因可能是 (选填下列选项前的序号)
A、测量摆长时,把摆线的长度当成了摆长
B、摆线上端未牢固地固定于O点,振动中出现松动,使摆线越摆越长
C、测量周期时,误将摆球(n-1)次全振动的时间t记为了n次全振动的时间,并由计算式T=t/n求得周期
D、摆球的质量过大
(3)在与其他同学交流实验方案并纠正了错误后,为了减小实验误差,他决定用图象法处理数据,并通过改变摆长,测得了多组摆长l和对应的周期T,并用这些数据作出T2-l图象如图甲所示。若图线的斜率为k,则重力加速度的测量值g= 。
(4)这位同学查阅资料得知,单摆在最大摆角θ较大时周期公式可近似表述为。为了用图象法验证单摆周期T和最大摆角θ的关系,他测出摆长为l的同一单摆在不同最大摆角θ时的周期T,并根据实验数据描绘出如图乙所示的图线。根据周期公式可知,图乙中的纵轴表示的是 ,图线延长后与横轴交点的横坐标为 。
甲、乙两弹簧振子质量相等,其振动图象如图11-1-7所示,则它们振动的机械能大小关系是E甲_________E乙(填“>”“=”或“<”);振动频率的大小关系是f甲_________f乙;在0—4 s内,甲的加速度为正向最大的时刻是____________,乙的速度为正向最大的时刻是____________.
图11-1-7
对于弹簧振子的周期性振动,我们可以通过如图11-1-11所示的小球的匀速圆周运动的投影来模拟。即振子从距平衡位置A处静止释放的同时,球恰从B点做匀速圆周运动,小球运动在x轴上的投影与振子运动同步,小球运动的线速度沿x轴的投影即为振子在投影处的速度。圆周运动的周期为T半径为R。由以上条件可知匀速圆周运动的线速度v1=________,振子在O点的速度大小为__________。
图11-1-11
一弹簧振子的质量为100 g,弹簧的劲度系数为k="10" N/m,将振子拉离平衡位置2 cm处放手使其振动,则此振子振动过程中受到的最大回复力大小是___________N,最大加速度的大小是___________m/s2.
甲、乙两个做简谐运动的弹簧振子,在甲振动20次的时间里,乙振动了40次,则甲、乙振动周期之比为___________________;若甲的振幅增大而乙的不变,则甲、乙振动频率之比为______________.
一个做简谐振动的质点,它的振幅是4 cm,频率是2.5 Hz,若从平衡位置开始计时,则经过2 s,质点完成了______________次全振动,质点运动的位移是______________,通过的路程是______________.