如图,已知正方体的棱长为2,E、F分别是
、
的中点,过
、E、F作平面
交
于G.
(l)求证:EG∥;
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体
的体积.
已知变量满足
则
的最小值是.
(本题满分14分)数列满足
.
(1)求数列{}的通项公式;(2)设数列{
}的前
项和为
,证明
.
(本题满分14分)
在梯形ABCD中,AB⊥AD,AB∥CD,A、B是两个定点,其坐
标分别为(0,-1)、(0,1),C、D是两个动点,且满足|CD|=|BC|.
(1)求动点C的轨迹E的方程;
(2)试探究在轨迹E上是否存在一点P?使得P到直线y=x-2的
距离最短;
(3)设轨迹E与直线所围成的图形的
面积为S,试求S的最大值。
其它解法请参照给分。
(本小题满分12分)
2008年北京奥运会乒乓球比赛将产生男子单打、女子单打、男子团体、女子团体共四枚金牌,保守估计中国乒乓球男队获得每枚金牌的概率均为,中国乒乓球女队获得每枚金牌的概率均为
.
(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一枚金牌的概率;
(2)记中国乒乓球队获得金牌的数为,按此估计
的分布列和数学期望
。
(本小题满分14分)
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);
(2)补全频数条形图;
(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?