给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.(1)求椭圆C的方程和其“准圆”方程;(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
已知:lα ,mα ,l∥m 求证:l ∥ α
设函数,(1)若函数在处与直线相切; (1) ①求实数的值; ②求函数上的最大值; (2)当时,若不等式对所有的都成立,求实数的取值范围.
已知数列中各项均为正数,是数列的前项和,且. (1)求数列的通项公式 (2)对,试比较与的大小.
设△ABC的三内角的对边长分别为a、b、c,已知a、b、c成等比数列,且 (Ⅰ)求角的大小; (Ⅱ)若,求函数的值域.
已知函数的图象过点P(0,2),且在点M处的切线方程为. (Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号