游客
题文

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图,在直线之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往. 家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读. 每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d, 0)处的学校. 已知船速为,车速为(水流速度忽略不计).
(Ⅰ)若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间;




(Ⅱ)若,求该学生早晨上学时,从家出发到达学校所用的最短时间.




求过点A(2,0)、B(6,0)和C(0,-2)的圆的方程。

如图,P是边长为3的正方形ABCD所在平面外的一点,PD⊥平面ABCD,O、E、F分别是AC、PA、PB的中点.求证:平面EFO∥ 平面PDC;

求过点2x+y+8=0和x+y+3=0的交点,且与直线2x+3y-7=0垂直的直线方程。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号