游客
题文

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X Y|,求随机变量ξ的分布列与数学期望Eξ.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

“五·一”放假期间,某旅行社共组织名游客,分三批到北京、香港两地旅游,为了做好游客的行程安排,旅行社对参加两地旅游的游客人数进行了统计,列表如下:


第一批
第二批
第三批
北京
200


香港
150
160[


已知在参加北京、香港两地旅游的名游客中,第二批参加北京游的频率是.
(1)现用分层抽样的方法在所有游客中抽取名游客,协助旅途后勤工作,问应在第三批参加旅游的游客中抽取多少名游客?
(2)已知,求第三批游客中到北京旅游人数比到香港旅游人数多的概率.

等比数列中,已知
1)求数列的通项
2)若等差数列,求数列前n项和,并求最大值

已知数列满足,数列满足,数列满足
(1)求数列的通项公式;
(2)试比较的大小,并说明理由;
(3)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢? 若会,求出的取值范围;若不会,请说明理由.

省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合放射性污染指数,并记作
(1)令,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

已知椭圆的方程为:,其焦点在轴上,离心率.
(1)求该椭圆的标准方程;
(2)设动点满足,其中M,N是椭圆上的点,直线OM与ON的斜率之积为,求证:为定值.
(3)在(2)的条件下,问:是否存在两个定点,使得为定值?
若存在,给出证明;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号