在等腰直角△ABC中,∠BAC=90°,AB=AC,
(1)如图1,点D、E分别是AB、AC边的中点,AF⊥BE交BC于点F,连结EF、CD交于点H.求证,EF⊥CD;
(2)如图2,AD=AE,AF⊥BE于点G交BC于点F,过F作FP⊥CD交BE的延长线于点P,试探究线段BP,FP,AF之间的数量关系,并说明理由.
图1 图2
图1是一商场的推拉门,已知门的宽度 米,且两扇门的大小相同(即 ,将左边的门 绕门轴 向里面旋转 ,将右边的门 绕门轴 向外面旋转 ,其示意图如图2,求此时 与 之间的距离(结果保留一位小数).(参考数据: , ,
某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元 千克,乙种水果18元 千克.6月份,这两种水果的进价上调为:甲种水果10元 千克,乙种水果20元 千克.
(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?
(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?
如图,已知一次函数 与反比例函数 的图象交于 , 两点.
(1)求一次函数与反比例函数的解析式;
(2)请根据图象直接写出 时 的取值范围.
已知二次函数 ,
①当 时,求这个二次函数的对称轴的方程;
②若 ,问: 为何值时,二次函数的图象与 轴相切?
③若二次函数的图象与 轴交于点 , , , ,且 , ,与 轴的正半轴交于点 ,以 为直径的半圆恰好过点 ,二次函数的对称轴 与 轴、直线 、直线 分别交于点 、 、 ,且满足 ,求二次函数的表达式.
如图所示, 的直角顶点 在函数 的图象上,顶点 、 在函数 的图象上, 轴,连接 , ,记 的面积为 , 的面积为 ,设 .
①求 的值以及 关于 的表达式;
②若用 和 分别表示函数 的最大值和最小值,令 ,其中 为实数,求 .