如图,已知△ABC三个顶点的坐标分别为A(-2,-1),B(-3,-3),C(-1,-3),
(1)、画出△ABC向右平移三个单位的对应图形△,并写出
的坐标;
(2)、画出△ABC关于原点O对称的△,并写出
的坐标;
已知:如图1,一次函数的图像与x轴、y轴分别交于点A、B,与函数
的图像交于点C,点C的横坐标为-3.
(1)求点B的坐标;
(2)若点Q为直线OC上一点,且,求点Q的坐标;
(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.
① 在图2中,只利用圆规作图找到点P的位置;
(保留作图痕迹,不得在图2中作无关元素.)
② 求点P的坐标.
如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴相交于点A(-3,0),与y轴交于点B,且与正比例函数y=的图象交点为C(m,4)求:
(1)一次函数y=kx+b的解析式;
(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标。
(3)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.
如图,直线:
分别与
轴、
轴交于A、B两点,点C线段AB上,作CD⊥x轴于D, CD="2OD," 点E线段OB上,且AE=BE;
(1)填空:点C的坐标为( , );点E的坐标为( , );
(2)直线过点E,且将△AOB分成面积比为1:2的两部分,求直线
的表达式;
(3)点P在x轴上运动,
①当PC+PE取最小值时,求点P的坐标及PC+PE的最小值;
②当PC-PE取最大值时,求点P的坐标及PC-PE的最大值;
如图,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足,直线OQ与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
如图,直线y =" 2x" + 3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.