如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q.
(1)将tanq表示为x的函数;
(2)求点D的位置,使q取得最大值.
设函数f(x)=×
,其中向量
="(2cosx,1),"
=(cosx,
sin2x+m).
(1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间;
(2)当xÎ[0]时,ô f(x)ô <4恒成立,求实数m的取值范围.
已知向量=(sinA,cosA),
=
,
,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx,(xÎR) 最大值及取最大值时x的集合.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.
已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
已知f(α)=
(1)化简f(α)
(2)若cos(+2α)=
,求f(
-α)的值.