游客
题文

如图,椭圆C:x2a2+y2b2=1a>b>0经过点P1,32,离心率e=12,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知抛物线Cy2=2px(p>0),M点的坐标为(12,8),N点在抛物线C上,且满足O为坐标原点.

(1)求抛物线C的方程;
(2)以M点为起点的任意两条射线l1l2的斜率乘积为1,并且l1与抛物线C交于AB两点,l2与抛物线C交于DE两点,线段ABDE的中点分别为GH两点.求证:直线GH过定点,并求出定点坐标.

如图,在矩形ABCD中,AB=2AD=2,OCD的中点,沿AO将△AOD折起,使DB.

(1)求证:平面AOD⊥平面ABCO
(2)求直线BC与平面ABD所成角的正弦值.

已知数列{an}满足a1=3,an+1anp·3n(n∈N*p为常数),a1a2+6,a3成等差数列.
(1)求p的值及数列{an}的通项公式;
(2)设数列{bn}满足bn,证明:bn.

一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.
(1)求取出的3个球编号都不相同的概率;
(2)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.

已知函数f(x)=sin xcos x+cos 2x,△ABC三个内角ABC的对边分别为abc,且f(B)=1.
(1)求角B的大小;
(2)若ab=1,求c的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号