根据如图所示的流程图,将输出的的值依次分别记为
,将输出的
的值依次分别记为
.
(Ⅰ)求数列,
通项公式;
(Ⅱ)依次在与
中插入
个3,就能得到一个新数列
,则
是数列
中的第几项?
(Ⅲ)设数列的前
项和为
,问是否存在这样的正整数
,使数列
的前
项的和
,如果存在,求出
的值,如果不存在,请说明理由.
甲、乙两个箱子中装有大小相同的小球,甲箱中有2个红球和2个黑球,乙箱中装有2个黑球和3个红球,现从甲箱和乙箱中各取一个小球并且交换.
(Ⅰ)求交换后甲箱中刚好有两个黑球的概率;
(Ⅱ)设交换后甲箱中黑球的个数为,求
的分布列和数学期望.
过点作倾斜角为
的直线与曲线
交于点
,
求的最小值及相应的
值.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—5:不等式选讲
设函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若不等式的解集是非空的集合,求实数
的取值范围.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线
的参数方程是
(
为参数),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
,
两点,求M,N两点间的距离.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—1:几何证明选讲
如图,已知是
的直径,
,
是
上两点,
于
,
交
于
,交
于
,
.
(Ⅰ)求证:是
的中点;
(Ⅱ)求证:.