设函数f(x)=1ax,0≤x≤a11-a(1-x),a<x≤1.a为常数且a∈(0,1).
(1)当a=12时,求f(f(13)); (2)若x0满足f(f(x0))=x0,但f(x)≠0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2; (3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[13,12]上的最大值和最小值。
如果函数在区间上有最小值-2,求的值。
设 (1)讨论的奇偶性; (2)判断函数在(0,)上的单调性并用定义证明。
已知全集,集合, (1)求;(2)求
设函数 (1)当时,求的极值; (2)当时,求的单调区间; (3)当时,对任意的正整数,在区间上总有个数使得成立,试求正整数的最大值。
设椭圆的离心率,右焦点到直线的距离为坐标原点。 (I)求椭圆的方程; (II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号