游客
题文

电视台为某个广告公司特约播放甲、乙两部电视连续剧.经调查,播放甲连续剧平均每集有收视观众20万人次,播放乙连续剧平均每集有收视观众15万人次,公司要求电视台每周共播放7集.
(1)设一周内甲连续剧播放集,甲、乙两部连续剧的收视观众的人次的总和为万人次,求关于的函数关系式;
(2)已知电视台每周只能为该公司提供不超过300分钟的播放时间,并且播放甲连续剧每集需要50分钟,播放乙连续剧每集需要35分钟,请你用所学知识求电视台每周应播放甲、乙两部连续剧各多少集,才能使得每周收看甲、乙连续剧的观众的人次总和最大,并求出这个最大值.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,在 ΔABC 中, AB=AC A=36° BD 平分 ABC AC 于点 D

求证: AD=BC

在平面直角坐标系 xOy 中,点 P 的坐标为 ( x 1 y 1 ) ,点 Q 的坐标为 ( x 2 y 2 ) ,且 x 1 x 2 y 1 y 2 ,若 P Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点 P Q 的"相关矩形",如图为点 P Q 的"相关矩形"示意图.

(1)已知点 A 的坐标为 ( 1 , 0 )

①若点 B 的坐标为 ( 3 , 1 ) ,求点 A B 的"相关矩形"的面积;

②点 C 在直线 x = 3 上,若点 A C 的"相关矩形"为正方形,求直线 AC 的表达式;

(2) O 的半径为 2 ,点 M 的坐标为 ( m , 3 ) ,若在 O 上存在一点 N ,使得点 M N 的"相关矩形"为正方形,求 m 的取值范围.

在等边 ΔABC 中,

(1)如图1, P Q BC 边上的两点, AP = AQ BAP = 20 ° ,求 AQB 的度数;

(2)点 P Q BC 边上的两个动点(不与点 B C 重合),点 P 在点 Q 的左侧,且 AP = AQ ,点 Q 关于直线 AC 的对称点为 M ,连接 AM PM

①依题意将图2补全;

②小茹通过观察、实验提出猜想:在点 P Q 运动的过程中,始终有 PA = PM ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:要证明 PA = PM ,只需证 ΔAPM 是等边三角形;

想法2:在 BA 上取一点 N ,使得 BN = BP ,要证明 PA = PM ,只需证 ΔANP ΔPCM

想法3:将线段 BP 绕点 B 顺时针旋转 60 ° ,得到线段 BK ,要证 PA = PM ,只需证 PA = CK PM = CK

请你参考上面的想法,帮助小茹证明 PA = PM (一种方法即可).

在平面直角坐标系 xOy 中,抛物线 y = m x 2 - 2 mx + m - 1 ( m > 0 ) x 轴的交点为 A B

(1)求抛物线的顶点坐标;

(2)横、纵坐标都是整数的点叫做整点.

①当 m = 1 时,求线段 AB 上整点的个数;

②若抛物线在点 A B 之间的部分与线段 AB 所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求 m 的取值范围.

已知 y x 的函数,自变量 x 的取值范围 x > 0 ,下表是 y x 的几组对应值:

x

1

2

3

5

7

9

y

1.98

3.95

2.63

1.58

1.13

0.88

小腾根据学习函数的经验,利用上述表格所反映出的 y x 之间的变化规律,对该函数的图象与性质进行了探究.

下面是小腾的探究过程,请补充完整:

(1)如图,在平面直角坐标系 xOy 中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;

(2)根据画出的函数图象,写出:

x = 4 对应的函数值 y 约为    

②该函数的一条性质:   

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号