九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.
根据统计图提供的信息,解答下列问题:
(1)在这次调查中一共抽取了 名学生, 的值是 .
(2)请根据以上信息直接在答题卡上补全条形统计图;
(3)扇形统计图中,“数学”所对应的圆心角度数是 度;
(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.
经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.
如图,在菱形 中,对角线 与 交于点 .过点 作 的平行线,过点 作 的平行线,两直线相交于点 .
(1)求证:四边形 是矩形;
(2)若 , ,则菱形 的面积是 .
如图,已知 , ,抛物线 过 、 两点,并与过 点的直线 交于点 .
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点 ,使四边形 的周长最小?若存在,求出点 的坐标,若不存在,请说明理由;
(3)点 为 轴右侧抛物线上一点,过点 作直线 的垂线,垂足为 .问:是否存在这样的点 ,使以点 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标,若不存在,请说明理由.
如图1,点 是正方形 边 上任意一点,以 为边作正方形 ,连接 ,点 是线段 中点,射线 与 交于点 ,连接 .
(1)请直接写出 和 的数量关系和位置关系;
(2)把图1中的正方形 绕点 顺时针旋转 ,此时点 恰好落在线段 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
(3)把图1中的正方形 绕点 顺时针旋转 ,此时点 、 恰好分别落在线段 、 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.