如图1,点 是正方形 边 上任意一点,以 为边作正方形 ,连接 ,点 是线段 中点,射线 与 交于点 ,连接 .
(1)请直接写出 和 的数量关系和位置关系;
(2)把图1中的正方形 绕点 顺时针旋转 ,此时点 恰好落在线段 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
(3)把图1中的正方形 绕点 顺时针旋转 ,此时点 、 恰好分别落在线段 、 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.
如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度数。
(6分)杭州实行垃圾分类处理,垃圾桶有绿,黄,红三种颜色,绿色是投放可回收砬圾,黄色投放不可回收垃圾,红色是有毒垃圾,在漆黑晚上,小明下楼要把家中的三袋垃圾分别投到三个垃圾筒中,其中一袋是可回收的垃圾,一袋是不可回收的垃圾,一袋是有害垃圾,小明随手投放,三袋都投正确的概率是多少?画出树状图或列表分析,并求出投放正确的概率.
如图,已知∠A=∠D,AB="DE,AF=DC" ,请问图中有哪几对全等三角形?并任选其中一对给予证明。
如图,△ABC中,∠B=50°,AD平分∠BAC, ∠ADC=80°,求∠C的度数。
锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y,(y>0).
(1)△ABC中边BC上高AD= _______;
(2)当x= _______时PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式,并求出z为何值时y
最大,最大值是多少?1