如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△,连结
、
.若∠ACB=30°,AB=2,
=x,四边形
的面积为S.
(1)线段的长度最小值是_____,此时x=" _____"
(2)当x为何时,四边形是菱形?并说明理由;
(3)求S与x的函数关系式,并在直角坐标系中画出这个函数的图象
如图,在□ABCD中,点E是DC的中点,连接AE,并延长交BC的延长线于点F.
(1)求证:△ADE和△CEF的面积相等;
(2)若AB=2AD,试说明AF恰好是∠BAD的平分线.
(1)化简:+
.
(2)解分式方程:
解不等式﹣
≥1,并把它的解集在数轴上表示出来.
【背景知识】
数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上点、
点表示的数为
、
,则
,
两点之间的距离
,若
,则可简化为
;线段
的中点
表示的数为
.
【问题情境】
已知数轴上有、
两点,分别表示的数为
,
,点
以每秒
个单位的速度沿数轴向右匀速运动,点
以每秒
个单位向左匀速运动.设运动时间为
秒(
).
【综合运用】
(1)运动开始前,、
两点的距离为;线段
的中点
所表示的数.
(2)点运动
秒后所在位置的点表示的数为;点
运动
秒后所在位置的点表示的数为;(用含
的代数式表示)
(3)它们按上述方式运动,、
两点经过多少秒会相遇,相遇点所表示的数是什么?
(4)若,
按上述方式继续运动下去,线段
的中点
能否与原点重合,若能,求出运动时间,并直接写出中点
的运动方向和运动速度;若不能,请说明理由.(当
,
两点重合,则中点
也与
,
两点重合)
为实现区域教育均衡发展,我区计划对,
两类薄弱学校全部进行改造.已知改造一所
类学校和两所
类学校共需资金
万元;改造两所
类学校和一所
类学校共需资金
万元.问改造一所
类学校和一所
类学校分别需要多少万元的资金?
(1)老师让两位同学上黑板板演,其中甲同学设了一个未知数,请你帮他写出完整的解答过程.
(2)另一位乙同学设了两个未知数,却没法做下去,老师说也可以做,但需要列两个不同的方程,爱动脑的你能帮助她列出方程吗?
解:设改造一所类学校需要
万元资金;改造一所
类学校需要
万元资金,根据题意可得
方程①:
方程②:
(3)丙同学说我一个未知数也没有设,也可以求出答案来.请聪明的你写出丙同学的方法.