湛江为建设国家卫生城市,现计划在相距20 km的赤坎区(记为A)霞山区(记为B)两城区外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对市区的影响度与所选地
点到市区的距离有关,对赤坎区和霞山区的总影响度为两市区的影响度之和,记C点到赤坎区的距离为x km,建在C处的垃圾处理厂对两市区的总影响度为y.统计调查表明:垃圾处理厂对赤坎区的影响度与所选地点到赤坎区的距离的平方成反比,比例系数为4;对霞山区的影响度与所选地点到霞山区的距离的平方成反比,比例系数为k.当垃圾处理厂建在的中点时,对两市区的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到赤坎区的距离;若不存在,说明理由.
已知椭圆的离心率为
,短轴的一个端点到右焦点的距离为
,直线
交椭圆于不同的两点
。
(1)求椭圆的方程;
(2)若坐标原点到直线
的距离为
,求
面积的最大值。
在,角
所对的边分别为
,向量
,且
。
(1)求的值;(2)若
,求
的值。
如图(1),在等腰直角三角形中,
,点
分别为线段
的中点,将
和
分别沿
折起,使二面角
和二面角
都成直二面角,如图(2)所示。
(1)求证:面
;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)求点到平面
的距离。
已知函数。
(1)求函数的单调递减区间;
(2)求切于点的切线方程;
(3)求函数在
上的最大值与最小值。
平面内动点到定点
的距离比它到
轴的距离大
。
(1)求动点的轨迹
的方程;
(2)过的直线
与
相交于
两点,若
,求弦
的长。