已知函数 ,
.
(1)当 时,求函数
的最小值;
(2)当 时,求证:无论
取何值,直线
均不可能与函数
相切;
(3)是否存在实数,对任意的
,且
,有
恒成立,若存在求出
的取值范围,若不存在,说明理由。
已知关于的不等式
的解集是
。
(1)求实数的值;
(2)若正数满足:
,求
的最大值。
已知,数列
满足:
。
(1)用数学归纳法证明:;
(2)已知;
(3)设Tn是数列{an}的前n项和,试判断Tn与n-3的大小,并说明理由。
已知焦点在轴上,中心在坐标原点的椭圆C的离心率为
,且过点
(1)求椭圆C的方程;
(2)直线分别切椭圆C与圆
(其中
)于A.B两点,求|AB|的最大值。
设函数.
(Ⅰ)若x=时,取得极值,求
的值;
(Ⅱ)若在其定义域内为增函数,求
的取值范围;
(Ⅲ)设,当
=-1时,证明
在其定义域内恒成立,并证明
(
).
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,
,已知AE与平面ABC所成的角为
,且
.
(1)证明:平面ACD平面
;
(2)记,
表示三棱锥A-CBE的体积,求
的表达式;
(3)当取得最大值时,求二面角D-AB-C的大小.