设函数.
(Ⅰ)若x=时,取得极值,求
的值;
(Ⅱ)若在其定义域内为增函数,求
的取值范围;
(Ⅲ)设,当
=-1时,证明
在其定义域内恒成立,并证明
(
).
(本小题满分12分)
在△ABC中,角A,B,C所对的边分别为a,b,c且,a=1,b=2,
(1)求C和c;
(2)P为△ABC内任一点(含边界),点P到三边距离之和为d,设P到AB,BC距离分别为x,y,用x,y表示d并求d的取值范围.
(本小题满分12分)
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.
(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX.
已知椭圆的离心率为
,
直线与以原点为圆心、以椭圆
的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线
过点F1,且垂直于椭圆的长轴,动直
线垂直
于点P,线段PF2的垂直平分线交
于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积
的最小值.
(本小题满分12分)已知,
,
(Ⅰ)把表示为
的函数
并写出定义域;
(Ⅱ)求的最值.
(本小题满分12分)已知三棱锥P—ABC中,PC⊥底面ABC,,
,
二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)求直线EB与平面PAC所成的角。