如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC绕直角顶点C顺时针旋转90°得到△A1B1C,求:
(1)弧AA1的长;
(2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积;
(3)在这个旋转过程中三角板所扫过的图形面积;
(4)在这个旋转过程中三角板AB边所扫过的图形面积.
如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求证:△AFO≌△CEB;
(2)若EB=5cm,CD=cm,设OE=x,求x值及阴影部分的面积.
如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接 BD,AD,OC,∠ADB=30°.
(1)求∠AOC的度数;
(2)若弦BC=6cm,求图中阴影部分的面积.
如图,在平面直角坐标系xOy中,△AOB三个顶点的坐标分别为O(0,0)、A(﹣2,3)、B(﹣4,2),将△AOB绕点O逆时针旋转90°后,点A、O、B分别落在点A'、O'、B'处.
(1)在所给的直角坐标系xOy中画出旋转后的△A'O'B';
(2)求点B旋转到点B'所经过的弧形路线的长.
如图,在正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点(小正方形的顶点)上,将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.
(1)在正方形网格中,画出△AB1C1;
(2)直接写出旋转过程中动点B所经过的路径长.