已知抛物线,
(1)若求该抛物线与x轴的交点坐标;
(2)若 ,证明抛物线与x轴有两个交点;
(3)若且抛物线在
区间上的最小值是-3,求b的值.
如图,有三条公路a,b,c,为了方便司机休息,路政部门确定修建一个休息站P,使它到三条公路的距离相等.(请用尺规作图,保留作图痕迹,不写作法.)
如图,∠1=∠2,∠C=∠D,AC与BD相交于点E,求证:CE=DE.
解分式方程:.
在平行四边形ABCD中,对角线AC和BD交于点O,AC=8.
(1)如图1,若AB⊥AC,BD=12,点P是线段AD上的动点(不包含端点A,D),过点P作PE⊥AC,垂足为点E,PF⊥BD,垂足为点F,设PE=x,PF=y,求y与x的函数关系式并直接写出自变量x的取值范围;
(2)如图2,若AE平分∠BAC,点F为BC中点,且点F保持在点E的右边,求线段BC的变化范围.
在平面直角坐标系中,直线y1=x+a和y2=﹣
x+b交于点E(3,3),点P(m,n)在直线y1=
x+a上,过点P(m,n)作x轴的垂线,交直线y2=﹣
x+b于点F.
(1)若n=2,求△PEF的面积;
(2)若PF=2,求点P的坐标.