游客
题文

在直角坐标平面上给定一曲线y2=2x,
(1)设点A的坐标为,求曲线上距点A最近的点P的坐标及相应的距离|PA|.
(2)设点A的坐标为(a,0),a∈R,求曲线上的点到点A距离的最小值dmin,并写出dmin=f(a)的函数表达式.

科目 数学   题型 解答题   难度 困难
知识点: 参数方程
登录免费查看答案和解析
相关试题

《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马 P - A B C D 中,侧棱 P D 底面 A B C D ,且 P D = C D ,过棱 P C 的中点 E ,作 E F P B P B 于点 F ,连接 D E , D F , B D , B E .

image.png

(Ⅰ)证明: P B 平面 D E F .试判断四面体 D B E F 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅱ)若面 D E F 与面 A B C D 所成二面角的大小为 π 3 ,求 D C B C 的值.

设等差数列 a n 的公差为 d ,前 n 项和为 S n ,等比数列 b n 的公比为 q .已知 b 1 = a 1 , b 2 = 2 , q = d , S 10 = 100
(Ⅰ)求数列的通项公式;
(Ⅱ)当 d > 1 时,记 c n = a n b n ,求数列 c n 的前 n 项和 T n

某同学用"五点法"画函数 f ( x ) = A sin ( ω x + φ ) ( ω > 0 , φ < π 2 ) 在某一个周期内的图象时,列表并填入了部分数据,如下表:

image.png

(Ⅰ)请将上表数据补充完整,并直接写出函数 f ( x ) 的解析式;
(Ⅱ)将 y = f ( x ) 图象上所有点向左平行移动 θ ( θ > 0 ) 个单位长度,得到 y = g ( x ) 的图象.若 y = g ( x ) 图象的一个对称中心为 ( 5 π 12 , 0 ) ,求 θ 的最小值.

a 为实数,函数 f x = x + a 2+ x - a -a a - 1
(1)若 f 0 1 ,求 a 的取值范围;
(2)讨论 f x 的单调性;
(3)当 a2 时,讨论 f x + 4 x 在区间 0 , + 内的零点个数.

已知过原点的动直线 l 与圆 C 1 :x2+y2-6x+5=0 相交于不同的两点 A,B
(1)求圆 C 1 的圆心坐标;
(2)求线段 AB 的中点 M 的轨迹 C 的方程;
(3)是否存在实数 k ,使得直线 l:y=k x - 4 与曲线 C 只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号