高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.
(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;
(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望.
(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.
(1)求该公司员工的月平均收入及员工月收入的中位数;
(2)在收入为1000至1500元和收入为3500至4000元的员工中用分层抽样的方法抽取一个容量15的样本, 员工甲、乙的月收入分别为1200元、3800元, 求甲乙同时被抽到的概率.
函数对于任意的实数
都有
成立,且当
时
恒成立.
(1)证明函数的奇偶性;
(2)若,求函数
在
上的最大值;
(3)解关于的不等式
已知定义域为的函数
是奇函数.
(1)求的值;
(2)若对任意的,不等式
恒成立,求
的取值范围.
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为个,零件的实际出厂单价为
元.写出函数
的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
已知函数;
(1)若的定义域为
,求实数
的取值范围.
(2)若的值域为
,则实数
的取值范围.
(3)求函数的递减区间.