某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000元(π为圆周率).
(1)将表示成的函数,并求该函数的定义域;
(2)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大.
已知圆:
:
(Ⅰ)直线经过点
,其斜率为
,
与圆
交点分别为
,
,若
,求
的值;
(Ⅱ)点是圆
上除去与
轴交点中的任意一点,过点
作
轴的垂线段
,
为垂足,当点
在圆
上运动时,求线段
中点
的轨迹方程.
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明:直线
与x轴相交于定点
;
(3)在(2)的条件下,过点的直线与椭圆
交于
、
两点,求
的取值范围.
设数列为等差数列,且a5=14,a7=20。
(I)求数列的通项公式;
(II)若
某市近郊有一块500m×500m的正方形的荒地,地方政府准备在此块荒地中建一个综合性休闲广场,休闲广场为图所示的一个矩形场地,其总面积为3000平方米,其中阴影部分为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示
和
的函数关系式(写出函数定义域);
(2)怎样设计(当和
分别取何值时)才能使
取得最大值,最大值为多少?
如图,在底面为直角梯形的四棱锥,
,
(1)求证:
(2)求二面角的大小.