设满足以下两个条件得有穷数列为阶“期待数列”:①,②.(1)若等比数列为阶“期待数列”,求公比;(2)若一个等差数列既为阶“期待数列”又是递增数列,求该数列的通项公式;(3)记阶“期待数列”的前项和为.()求证:;()若存在,使,试问数列是否为阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
(本小题满分12分)在中,已知内角A、B、C所对的边分别为a、b、c,向量,,且。(I)求锐角B的大小;(II)如果,求的面积的最大值。
(本小题满分14分)已知递增数列满足:,,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足:,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为,,。当时,试比较A与B的大小。
(本小题满分12分)已知函数(为实常数)(Ⅰ)若函数为奇函数,求此函数的单调区间;(Ⅱ)记,当,试讨论函数的图象与函数的图象的交点个数.
(本小题满分12分)已知函数 (I)求的值;(II)解不等式:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号