如图,,为圆柱的母线,是底面圆的直径,,分别是,的中点,.(1)证明:;(2)证明:;(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.
设f(n)=1+++ +(n∈N*). 求证:f(1)+f(2)+ +f(n-1)=n·[f(n)-1](n≥2,n∈N*).
已知复数是纯虚数。 (1)求的值; (2)若复数,满足,求的最大值。
二阶矩阵M对应的变换将点与分别变换成点与. (Ⅰ)求矩阵M的逆矩阵; (Ⅱ)设直线在变换M作用下得到了直线:,求直线的方程.
已知数列的各项都是正数,且满足: (1)求; (2)证明:
是否存在实数使得关于n的等式 成立?若存在,求出的值并证明等式,若不存在,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号