如图,在平面直角坐标中,点A的坐标为(1,1),OA=AC,∠OAC=90°,点D为x轴上一动点.以AD为边在AD的右侧作正方形ADEF.
(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为 ;位置关系为 ,
(2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例;
(3)设D点坐标为(t,0),当D点从O点运动到C点时,用含t的代数式表示E点坐标,并直接写出E点所经过的路径长.
下图是单位长度为1的正方形网格,点A、B、C都在格点上;
(1)画出将图中的△ABC绕点A逆时针旋转90°的△AB’C’ ,(其中B、C的对应点分别是
B’、C’)
(2)求(1)中点B在运动过程中所经过的弧长.
(3)求(1)中边AC在运动过程中所扫过的区域的面积.
如图,纸片ABCD是一个菱形,其边长为2,∠BAD=120°,以点A为圆心的扇形与边BC相切于点E,与AB、AD分别相交于点F、G;
(1)请你判断所作的扇形与边CD的位置关系,并说明理由;
(2)若以所作出的扇形为侧面围成一个圆锥,求该圆锥的全面积.
已知关于x的一元二次方程x2 + mx +n+1=0的一根为2.
(1)用m的代数式表示n;
(2)求证:关于y的一元二次方程y2 +my+n=0总有两个不相等的实数根。
如图,,试求
和
的值.(4+4)
先化简,再求值:,其中a满足方程a2+4a+1=0.