每年的三月十二日,是中国的植树节,林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;
(2)设抽测的10株甲种树苗高度平均值为x,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;
(3)若小王在甲种树苗中随机领取了5株进行种植,用样本的频率分布估计总体分布,求小王领取到的“良种树苗”的株数X的分布列.
已知集合,集合
,集合
,
(Ⅰ)求; (Ⅱ)若
,试确定实数
的取值范围.
已知命题若非
是
的充分不
必要条件,求
的取值范围。
已知x与y之间的一组数据
x |
0 |
1 |
2 |
3 |
y |
1 |
3 |
5 |
7 |
(1)画出散点图
(2)若x与y线性相关,写出线性回归方程必定经过的点
(3)若x与y线性相关求出线性回归方程,
(4)说出2个刻画回归效果的手段,假设R=0.74
说明什么问题。
参考公式
(本小题满分12分)
设z1=1+2ai,z2=a-i(aR),已知A={z||z-z1|≤1},B={z||z-z2|≤2},A∩B=φ,求a的取值范围
(本小题满分分)有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表
不及格 |
及格 |
总计 |
|
甲班 |
10 |
35 |
M![]() |
乙班 |
7 |
38 |
45 |
总计 |
17 |
73 |
N |
(1)求M,N的值
(2)写出求k观测值的计算式
(3)假设k=0.6527你有多大把握认为成绩及格与班级
有关?
k=7.121又说明什么?
(P(k)
0.100,P(k
)
0.010)