商场销售的某种饮品每件售价为36元,成本为20元.对该饮品进行促销:顾客每购买一件,当即连续转动三次如图所示转盘,每次停止后指针向一个数字,若三次指向同一个数字,获一等奖;若三次指向的数字是连号(不考虑顺序),获二等奖;其他情况无奖.
(1)求一顾客一次购买两件该饮品,至少有一件获得奖励的概率;
(2)若奖励为返还现金,一等奖奖金数是二等奖的2倍,统计表明:每天的销售y(件)与一等奖的奖金额x(元)的关系式为,问x设定为多少最佳?并说明理由.
某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都
受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求分数在[90,100]之间的份数的数学期望
.
已知函数.
(1)若从集合中任取一个元素
,从集合
中任取一个元素
,求方程
有两个不相等实根的概率;
(2)若是从区间
中任取的一个数,
是从区间
中任取的一个数,求方程
没有实根的概率.
(本小题满分14分)
设关于的函数
,其中
为
上的常数,若函数
在
处取得极大值
.
(Ⅰ)求实数的值;
(Ⅱ)若函数的图象与直线
有两个交点,求实数
的取值范围;
(Ⅲ)设函数,若对任意地
,
恒成立,求实数
的取值范围.
(本小题满分12分)已知椭圆的中心在原点,焦点在
轴上,点
分别是椭圆的左、右焦点,在直线
(
分别为椭圆的长半轴和半焦距的长)上的点
,满足线段
的中垂线过点
.过原点
且斜率均存在的直线
、
互相垂直,且截椭圆所得的弦长分别为
、
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的最小值及取得最小值时直线
、
的方程.
(本小题满分12分)月份,有一款新服装投入某市场销售,
月
日该款服装
仅销售出件,
月
日售出
件,
月
日售出
件,
月
日售出
件,尔后,每天售
出的件数分别递增件,直到日销售量达到最大(只有
天)后,每天销售的件数开始下降,
分别递减件,到
月
日刚好售出
件.
(Ⅰ)问月几号该款
服装销售件数最多?其最大值是多少?
(Ⅱ)按规律,当该商场销售此服装达到件时,社会上就开始流行,而日销售量连续下降
并低于件时,则不再流行,问该款服装在社会上流行几天?说明理由.