某地计划用120-180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.
(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;
(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?
如图, 、 是半圆 上的三等分点,直径 ,连接 、 , ,垂足为 , 交 于点 .
(1)求 的度数;
(2)求阴影部分的面积(结果保留 和根号).
“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小张跑步的平均速度;
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在 处的求救者后,发现在 处正上方17米的 处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点 与居民楼的水平距离是15米,且在 点测得第一次施救时云梯与水平线的夹角 ,求第二次施救时云梯与水平线的夹角 的度数(结果精确到 ,可以使用科学计算器).
2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为 号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.
(1)第一天,1号展厅没有被选中的概率是 ;
(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.
如图,在 中, ,点 , 分别是边 , 上的中点,连接 并延长至点 ,使 ,连接 、 .
(1)证明: ;
(2)当 时,试判断四边形 的形状并说明理由.