平面内与两定点,()连线的斜率之积等于非零常数的点的轨迹,加上两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值的关系;
(Ⅱ)当=﹣1时,对应的曲线为;对给定的∈(﹣1,0)∪(0,+∞),对应的曲线为,设是的两个焦点.试问:在上,是否存在点,使得的面积.若存在,求的值;若不存在,请说明理由.
(本小题满分14分)围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修,可供利用的旧墙足够长),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽
的进出口,如图2所示.已知旧墙的维修费用为
,新墙的造价为
.设利用旧墙的长度为
(单位:
),修建此矩形场地围墙的总费用为
(单位:元).
(1)将表示为
的函数,并写出此函数的定义域;
(2)若要求用于维修旧墙的费用不得超过修建此矩形场地围墙的总费用的15%,试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
(本小题满分14分)等差数列的前
项和为
,已知
,
为整数,且
.
(1)求的通项公式;
(2)设,求数列
的前
项和
.
(本小题满分14分)在中,角
所对的边分别为
,且满足
,
.
(1)求的面积;
(2)若,求
的值.
(本小题满分12分)已知函数.
(1)求的最小正周期;
(2)设,求
的值域和单调递增区间.
(本小题满分12分)已知向量.
(1)求与
的夹角的余弦值;
(2)若向量与
平行,求
的值.