(本小题满分14分)
在四棱锥中,底面
是直角梯形,
∥
,
,
,平面
平面
.
(Ⅰ)求证:平面
;
(Ⅱ)求平面和平面
所成二面角(小于
)的大小;
(Ⅲ)在棱上是否存在点
使得
∥平面
?若
存在,求
的值;若不存在,请说明理由.
(本小题满分13分)
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求
的分布列和数学期望.
(本小题满分13分)
在中,角
,
,
所对的边分别为
,
,
,
,
.
(Ⅰ)求及
的值;
(Ⅱ)若,求
的面积.
已知是同一平面上不共线的三点,且
.
(1)求证:;
(2)若,求
两点之间的距离.