已知函数
(1)当时,求函数
取得最大值和最小值;
(2)设锐角的内角A、B、C的对应边分别是
,且
,若向量
与向量
平行,求
的值.
已知双曲线=1(m>0,n>0)的顶点为A1、A2,与y轴平行的直线l交双曲线于点P、Q.
(1)求直线A1P与A2Q交点M的轨迹方程;
(2)当m≠n时,求所得圆锥曲线的焦点坐标、准线方程和离心率.
双曲线=1的实轴为A1A2,点P是双曲线上的一个动点,引A1Q⊥A1P,A2Q⊥A2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程.
已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.
设数列{an}的前n项和Sn=na+n(n-1)b,(n=1,2,…),a、b是常数且b≠0.
(1)证明:{an}是等差数列.
(2)证明:以(an,-1)为坐标的点Pn(n=1,2,…)都落在同一条直线上,并写出此直线的方程.
(3)设a=1,b=,C是以(r,r)为圆心,r为半径的圆(r>0),求使得点P1、P2、P3都落在圆C外时,r的取值范围.
已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.
(1)证明: 点C、D和原点O在同一直线上.
(2)当BC平行于x轴时,求点A的坐标.