已知f(x)=x2+ax+3-a,若当x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.
(本小题满分13分)
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
,
,试比较
与
的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求
的数学期望.
(本小题满分13分)已知函数.
(1)求的最小正周期及其图象的对称轴方程;
(2)求的单调递减区间.
(本小题满分14分)对于定义域为的函数
,若同时满足下列条件:①
在
内单调递增或单调递减;②存在区间
,使
在
上的值域为
;那么把
(
)叫闭函数,且条件②中的区间
为
的一个“好区间”.
(1)求闭函数的“好区间”;
(2)若为闭函数
的“好区间”,求
、
的值;
(3)判断函数是否为闭函数?若是闭函数,求实数
的取值范围.
(本小题满分13分)设函数的图象的一条对称轴是
.
(1)求的值及
在区间
上的最大值和最小值;
(2)若,
,求
的值.
(本小题满分12分)已知函数,且
.
(1)若在区间
上有零点,求实数
的取值范围;
(2)若在
上的最大值是2,求实数
的的值.