请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2≤.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为________.
已知命题,则命题
已知定义在的函数 若,则实数
定义运算min。已知函数,则g(x)的最大值为______。
函数f(x)=的定义域为[-1,2],则该函数的值域为_________.
已知函数是定义在上的偶函数. 当时,, 则当时,.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号