已知函数f(x)=ax+ (a>1).
(1)证明:函数f(x)在(-1,+∞)上为增函数;
(2)用反证法证明方程f(x)=0没有负数根.
已知函数。
(1):当时,求函数
的极小值;
(2):试讨论函数零点的个数。
直线过点P
(
斜率为
,与直线
:
交于点A,与
轴交于点B,点A,B的横坐标分别为
,记
.
(Ⅰ)求的解析式;
(Ⅱ)设数列满足
,求数列
的通项公式;
(Ⅲ)在(Ⅱ)的条件下,当时,证明不等式
.
在正三角形中,
、
、
分别是
、
、
边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△
沿
折起到
的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)
(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小;
(Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示)
为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
A组 |
B组 |
C组 |
|
疫苗有效 |
673 |
![]() |
![]() |
疫苗无效 |
77 |
90 |
![]() |
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知,求不能通过测试的概率.
已知向量,其中
.
(1)试判断向量与
能否平行,并说明理由?
(2)求函数的最小值.