已知椭圆
.
(1)求椭圆
的离心率;
(2)设
为原点,若点
在椭圆
上,点
在直线
上,且
,试判断直线
与圆
的位置关系,并证明你的结论.
在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为
,椭圆
的右焦点为
,过
作一条垂直于
轴的直线与椭圆相交于
,若线段
的长为
。
(1)求椭圆的方程;
(2)设是直线
上的点,直线
与椭圆
分别交于点
,求证:直线
必过
轴上的一定点,并求出此定点的坐标;
已知定义在上的函数
,其中
为大于零的常数.
(Ⅰ)当时,令
,
求证:当时,
(
为自然对数的底数);
(Ⅱ)若函数,在
处取得最大值,求
的取值范围
已知函数(x≠0)各项均为正数的数列{an}中a1=1,
,
。(1)求数列{an}的通项公式;(2)在数列{bn}中,对任意的正整数n,bn·
都成立,设Sn为数列{bn}的前n项和试比较Sn与
的大小。
下面一组图形为三棱锥P-ABC的底面与三个侧面.已知AB⊥BC,PA⊥AB,PA⊥AC.
(1)在三棱锥P-ABC中,求证:平面ABC⊥平面PAB;
(2)在三棱锥P-ABC中,M是PA的中点,且PA=BC=3,AB=4,求三棱锥P-MBC的体积.
近年来,我国机动车拥有量呈现快速增加的趋势,可与之配套的基础设施建设速度相对迟缓,交通拥堵问题已经成为制约城市发展的重要因素,为了解某市的交通状况,现对其6条道路进行评估,得分分别为5、6、7、8、9、10规定评估的平均得分与全市的总体交通状况等级如下表:
评估的平均得分 |
[0,6] |
[6,8] |
[8,10] |
全市的总体交通 |
不合格 |
合格 |
优秀 |
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级。
(2)用简单随机抽样方法从6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率