已知函数 , .证明:
(1)存在唯一
,使
;
(2)存在唯一
,使
,且对(1)中的
.
已知等差数列的前
项和为
,公差
,且
,
成等比数列.
(1)求数列的通项公式;
(2)设是首项为1公比为3 的等比数列,求数列
前
项和
.
已知函数,其中实数
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求
的值.
在直角坐标系中,曲线
的参数方程为
为参数),以该直角坐标系的原点
为极点,
轴的正半轴为极轴的极坐标系下,曲线
的方程为
.
(1)求曲线的普通方程和曲线
的直角坐标方程;
(2)设曲线和曲线
的交点
、
,求
.
如图,点是以线段
为直径的圆
上一点,
于点
,过点
作圆
的切线,与
的延长线交于点
,点
是
的中点,连结
并延长与
相交于点
,延长
与
的延长线相交于点
.
(Ⅰ)求证:;
(Ⅱ)求证:是圆
的切线.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间
上是减函数,求实数
的最小值;
(Ⅲ)若存在(
是自然对数的底数)使
,求实数
的取值范围.