如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
已知椭圆C:的短轴长为
,右焦点
与抛物线
的焦点重合,
为坐标原点
(1)求椭圆C的方程;
(2)设、
是椭圆C上的不同两点,点
,且满足
,若
,求直线AB的斜率的取值范围.
济南市开展支教活动,有五名教师被随机的分到A、B、C三个不同的乡镇中学,且每个乡镇中学至少一名教师,
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.
在数列中,
,并且对于任意n∈N*,都有
.
(1)证明数列为等差数列,并求
的通项公式;
(2)设数列的前n项和为
,求使得
的最小正整数
.
已知矩形与正三角形
所在的平面互相垂直,
、
分别为棱
、
的中点,
,
,
(1)证明:直线平面
;
(2)求二面角的大小.
已知向量.
(1)当时,求
的值;
(2)设函数,已知在△ABC中,内角A、B、C的对边分别为
,若
,求
(
)的取值范围.