游客
题文

如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

已知椭圆C:的短轴长为,右焦点与抛物线的焦点重合, 为坐标原点
(1)求椭圆C的方程;
(2)设是椭圆C上的不同两点,点,且满足,若,求直线AB的斜率的取值范围.

济南市开展支教活动,有五名教师被随机的分到A、B、C三个不同的乡镇中学,且每个乡镇中学至少一名教师,
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.

在数列中,,并且对于任意n∈N*,都有
(1)证明数列为等差数列,并求的通项公式;
(2)设数列的前n项和为,求使得的最小正整数.

已知矩形与正三角形所在的平面互相垂直, 分别为棱的中点,,

(1)证明:直线平面
(2)求二面角的大小.

已知向量.
(1)当时,求的值;
(2)设函数,已知在△ABC中,内角A、B、C的对边分别为,若,求 ()的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号