已知{an}是公比为q的等比数列,且am、am+2、am+1成等差数列.
(1)求q的值;
(2)设数列{an}的前n项和为Sn,试判断Sm、Sm+2、Sm+1是否成等差数列?并说明理由.
正△的边长为4,
是
边上的高,
分别是
和
边的中点,现将△
沿
翻折成直二面角
.
(1)试判断直线与平面
的位置关系,并
说明理由;
(2)求二面角的余弦值;
|
|
(3)在线段上是否存在一点
,使
?证明你的结论.
在△ABC中,已知角A为锐角,且.
(1)、将化简成
的形式;
(2)、若,求边AC的长. ;
设椭圆过点
,离心率为
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
=
,证明:点
的轨迹与
无关.
已知函数上为增函数.
(1)求k的取值范围;
(2)若函数的图象有三个不同的交点,求实数k的取值范围.
对任意
都有
(Ⅰ)求和
的值;
(Ⅱ)数列满足:
=
+
,数列
是等差数列吗?请给予证明;
(Ⅲ)令
试比较与
的大小.