已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线l与圆C交于A、B两点.
(1)若|AB|=,求直线l的倾斜角;
(2)若点P(1,1)满足2=
,求此时直线l的方程.
(本小题满分14分)
已知椭圆的左,右两个顶点分别为
、
.曲线
是以
、
两点为顶点,离心率为
的双曲线.设点
在第一象限且在曲线
上,直线
与椭圆相交于另一点
.
(1)求曲线的方程;
(2)设、
两点的横坐标分别为
、
,证明:
;
(3)设与
(其中
为坐标原点)的面积分别为
与
,且
,求
的取值范围.
(本小题满分14分)
等比数列的各项均为正数,
成等差数列,且
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.
(本小题满分14分)
如图5所示,在三棱锥中,
,平面
平面
,
于点
,
,
,
.
(1)证明△为直角三角形;
(2)求直线与平面
所成角的正弦值
.(本小题满分12分)
如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中
的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以表示.
已知甲、乙两个小组的数学成绩的平均分相同.
(1)求的值;
(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学
成绩之差的绝对值为,求随机变量
的分布列和均值(数学期望).
本小题满分12分)已知函数.
(1)求的值;
(2)设,若
,求
的值.