2001年以来,我市药店积极实施药品降价,累计降价的总金额为269亿元. 五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003年,2007年的相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.
年份 |
2001 |
2003 |
2004 |
2005 |
2007 |
降价金额(亿元) |
54 |
|
35 |
40 |
|
先化简,再求值:,其中x满足方程
.
如果将抛物线沿直角坐标平面先向左平移3个单位,再向下平移2个单位,得到了抛物线
.
(1)试确定b,c的值;
(2)求出抛物线的对称轴和顶点坐标.
如图,在△ABC中,AD是BC边的中线,过点C、B分别作AD及其延长线的垂线CF、BE,垂足分别为点F、E.求证:BE=CF
解不等式,并将解集在数轴上表示出来.
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1) 求NC,MC的长(用t的代数式表示);
(2) 当t为何值时,四边形PCDQ构成平行四边形?
(3) 当t为何值时,射线QN恰好将△ABC的面积平分?
并判断此时△ABC的周长是否也被射线QN平分.