已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.
(3)如图②,将△ABF绕点B顺时针旋转一个角(0°<
<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P.与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.
如图,⊙M的圆心M在x轴上,⊙M分别交x轴于点A、B(A在B的左边),交y轴的正半轴于点C,弦CD∥x轴交⊙M于点D,已知A、B两点的横坐标分别是方程x2=4(x+3)的两个根,
(1)求点C的坐标;
(2)求直线AD的解析式;
(3)点N是直线AD上的一个动点,求△MNB周长的最小值,并在图中画出△MNB周长最小时点N的位置.
已知:如图,在△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD;
如图,为⊙O的直径,
是弦,且
于点E.连接
、
、
。
(1)求证:=
.
(2)若=18cm,
=
,求⊙O的半径.
透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.
(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?
(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.
如图,在直角坐标系中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点。
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标。