如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:
(1)求∠CGF的度数;
(2)求座面EF与地面之间的距离。(可用计算器计算,结果保留两个有效数字,参考数据:sin71.5°≈0.948,cos71.5°≈0.317,tan71.5°≈2.989
在菱形 中, ,点 是射线 上一动点,以 为边向右侧作等边 ,点 的位置随着点 的位置变化而变化.
(1)如图1,当点 在菱形 内部或边上时,连接 , 与 的数量关系是 , 与 的位置关系是 ;
(2)当点 在菱形 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点 在线段 的延长线上时,连接 ,若 , ,求四边形 的面积.
某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元 千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量 (千克)与销售单价 (元 千克)之间的函数关系如图所示.
(1)求 与 的函数关系式,并写出 的取值范围;
(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
如图,在 中, 为 上一点,以点 为圆心, 为半径做圆,与 相切于点 ,过点 作 交 的延长线于点 ,且 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道 ,两扇活页门的宽 ,点 固定,当点 在 上左右运动时, 与 的长度不变.(所有的结果保留小数点后一位)
(1)若 ,求 的长;
(2)当点 从点 向右运动 时,求点 在此过程中运动的路径长.
参考数据: . , , 取3.14.
4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:
30 |
60 |
81 |
50 |
40 |
110 |
130 |
146 |
90 |
100 |
60 |
81 |
120 |
140 |
70 |
81 |
10 |
20 |
100 |
81 |
整理数据:按如下分段整理样本数据并补全表格:
课外阅读时间 |
|
|
|
|
等级 |
|
|
|
|
人数 |
3 |
|
8 |
|
分析数据:补全下列表格中的统计量:
平均数 |
中位数 |
众数 |
80 |
|
|
得出结论:
(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ;
(2)如果该校现有学生400人,估计等级为“ ”的学生有多少名?
(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?