如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:
(1)求∠CGF的度数;
(2)求座面EF与地面之间的距离。(可用计算器计算,结果保留两个有效数字,参考数据:sin71.5°≈0.948,cos71.5°≈0.317,tan71.5°≈2.989
如图,在□ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.
在ABCD中,对角线AC与BD交于点O,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中,证明CE=CF;
(2)若,∠BAD=90°, G是EF的中点(如图2),连结OG,判断OG与BD的位置关系与数量关系,并给出证明;
(3)若∠ABC=120°,FG∥CE,FG=CE,连结OG(如图3),判断OG与BD的位置关系与数量关系,并给出证明.
如图,梯形ABCD中,AD//BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高。
正方形ABCD中,点E、F为对角线BD上两点,DE=BF
(1)四边形AECF是什么四边形? 为什么?
(2)若EF=4cm,DE=BF=2cm,求四边形AECF的周长。
如图,一次函数的图像与反比例函数
的图像相交于A、B两点,
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像回答:当x取何值时
(3)根据图像回答:当x取何值时