设各项均为正数的数列的前
项和为
,满足
且
.
(1) 求数列的通项公式;
(2) 证明:对一切正整数,有
.
中,内角
的对边分别是
,已知
成等比数列,且
.
(1)求的值;
(2)设,求
的值.
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的回归直线方程=
x+
,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
附:回归直线的斜率和截距的最小二乘估计公式分别为:
运行如图所示的程序框图,当输入实数的值为
时,输出的函数值为
;当输入实数
的值为
时,输出的函数值为
.
(Ⅰ)求实数,
的值;并写出函数
的解析式;
(Ⅱ)求满足不等式的
的取值范围.
某种产品特约经销商根据以往当地的需求情况,得出如下该种产品日需求量的频率分布直方图.
(Ⅰ)求图中的值,并估计日需求量的众数;
(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为
件(
),纯利润为S元.
(1)将S表示为的函数;
(2)根据直方图估计当天纯利润S不少于元的概率.