如图所示空间分为Ⅰ,Ⅱ,Ⅲ三个足够长的区域,各边界面相互平行,其中Ⅰ,Ⅱ区域存在匀强电场EI=1.0×104 V/m,方向垂直边界面竖直向上;EⅡ=×105 V/m,方向水平向右,Ⅲ区域磁感应强度B=5.0 T,方向垂直纸面向里,三个区域宽度分别为d1=5.0 m,d2=4.0 m,d3=
m.一质量m=1.0×10-8 kg、电荷量q=1.6×10-6C的粒子从O点由静止释放,粒子重力忽略不计.求:
(1)粒子离开区域Ⅰ时的速度大小;
(2)粒子从区域Ⅱ进入区域Ⅲ时的速度方向与边界面的夹角;
(3)粒子从O点开始到离开Ⅲ区域时所用的时间.
搭载有“勇气”号火星车的探测器成功登陆在火星表面 。“勇气”号离火星地面12m时与降落伞自动脱离,被众气囊包裹的“勇气”号下落到地面后又弹跳到15m高处,这样上下碰撞了若干次后,才静止在火星表面上。假设“勇气”号下落及反弹运动均沿竖直方向。已知火星的半径为地球半径的二分之一,质量为地球的九分之一(取地球表面的重力加速度为10m/s2)。
(1)根据上述数据,火星表面的重力加速度是多少?
(2)若被众气囊包裹的“勇气”号第一次碰火星地面时,其机械能损失为其12m高处与降落伞脱离时的机械能的20﹪,不计空气的阻力,求“勇气”号与降落伞脱离时的速度。
(16分)如图所示,内壁光滑的半径为R的圆形轨道,固定在竖直平面内,质量为m1小球静止在轨道最低点,另一质量为m2的小球(两小球均可视为质点)从内壁上与圆心O等高的位置由静止释放,到最低点时与m1发生弹性碰撞,求:
(1)小球m2运动到最低点时的速度大小;
(2)碰撞后,欲使m1能沿内壁运动到最高点,则m2/m1应满足什么条件?
横截面积分别为的汽缸A、B竖直放置,底部用细管连通,气缸A中有定位卡环。现用质量分别为
="4.0" kg、
="2.0" kg的活塞封闭一定质量的某种理想气体,当气体温度为27℃时,活塞A恰与定位卡环接触,此时封闭气体的体积为
="300" mL,外界大气压强为
=1.0×105 Pa。(g取10m/s2)
(i)使气体温度缓慢升高到57℃时,求此时封闭气体的体积;
(ii)保持气体的温度57℃不变,用力缓慢压活塞B,使封闭气体体积恢复到,此时封闭气体的压强多大?活塞A与定位卡环间的弹力多大?
电动机带动滚轮匀速转动,在滚轮的作用下,将金属杆从最底端A送往倾角θ=30°的足够长斜面上部.滚轮中心B与斜面底部A的距离为L=6.5m,当金属杆的下端运动到B处时,滚轮提起,与杆脱离接触.杆由于自身重力作用最终会返回斜面底部,与挡板相撞后,立即静止不动.此时滚轮再次压紧杆,又将金属杆从最底端送往斜面上部,如此周而复始.已知滚轮边缘线速度恒为v=4m/s,滚轮对杆的正压力FN=2×104N,滚轮与杆间的动摩擦因数为μ=0.35,杆的质量为m=1×103Kg,不计杆与斜面间的摩擦,取g=10m/s2。
求:(1)在滚轮的作用下,杆加速上升的加速度;
(2)杆加速上升至与滚轮速度相同时前进的距离;
(3)每个周期中电动机对金属杆所做的功;
(4)杆往复运动的周期.
图示为宇宙中一恒星系的示意图,A为该星系的一颗行星,它绕中央恒星O的运行轨道近似为圆.已知引力常量为G,天文学家观测得到A行星的运行轨道半径为R0,周期为T0.
(l)中央恒星O的质量是多大?
(2)经长期观测发现,A行星的实际运行轨道与理论轨道有少许偏差,并且每隔t0时间其运行轨道偏离理论轨道最大,天文学家认为出现这种现象的原因可能是A行星外侧还存在着一颗未知的行星B(假设其运行的圆轨道与A在同一平面内,且与A的绕行方向相同).根据上述现象和假设,试估算未知行星的运动周期和轨道半径.