已知函数,
(
).
(1)若x=3是的极值点,求
在
[1,a]上的最小值和最大值;
(2)若在
时是增函数,求实数a的取值范围.
如图,椭圆经过点
,离心率
,直线
的方程为
.
(1)求椭圆的方程;
(2)是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
的斜率分别为
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
已知中心在原点的双曲线的右焦点为
,实轴长
.
(1)求双曲线的方程
(2)若直线与双曲线恒有两个不同的交点
,且
为锐角(其中
为原点),求
的取值范围.
是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)焦点在轴上的双曲线渐近线方程为
;
(2)点到双曲线上动点
的距离最小值为
.
已知以点为圆心的圆与直线
相切,过点
的动直线与圆
相交于
两点.
(1)求圆的方程;
(2)当时,求直线
的方程.
已知命题:方程
有两个不相等的负实根,命题
:
恒成立;若
或
为真,
且
为假,求实数
的取值范围.