如图,椭圆经过点
,离心率
,直线
的方程为
.
(1)求椭圆的方程;
(2)是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
的斜率分别为
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
在中,
,
,
分别是角
的对边.已知
,
.
(1)若,求角
的大小;
(2)若,求边
的长.
已知,
是函数
的两个零点,其中常数
,
,设
.
(Ⅰ)用,
表示
,
;
(Ⅱ)求证:;
(Ⅲ)求证:对任意的.
已知椭圆的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于
两点的直线
:
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由.
已知函数,
.
(Ⅰ)若曲线在点
处的切线与直线
垂直,求
的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)设,当
时,都有
成立,求实数
的取值范围.