某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
(本小题满分13分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过
,且他直到第二次测试才合格的概率为
.
(Ⅰ)求小刘第一次参加测试就合格的概率;
(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量
的分布列和数学期望.
(本小题满分13分)已知在中,角
所对的边分别为
,
,且
为钝角.
(Ⅰ)求角的大小;
(Ⅱ)若,求
的取值范围.
(本小题满分13分)已知椭圆经过点
,离心率为
.
(1)求椭圆的方程;
(2)设直线与椭圆
交于
、
,点
关于
轴的对称点
(
与
不重合),则直线
与
轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(本小题满分13分)已知数列的前
项和为
,
,
.
(1)求数列的通项公式;
(2)求数列的前
项和
.
(本小题满分13分)已知函数,其中
.
(1)当时,求
在
上的最大值;
(2)若时,函数
的最大值为
,求函数
的表达式;